dr hab. inż. Michał Kędzierski, prof. WAT
Instytut Geodezji
Wydział Inżynierii Łądowej i Geodezji
Wojskowa Akademia Techniczna

RECENZJA

Rozprawy doktorskiej mgr. inż. Karola Kwiatka

na temat:

„Zastosowanie immersyjnych obrazów wideo do fotogrametrycznych
pomiarów 3D”

1. Podstawa formalna

Formalną podstawą recenzji jest pismo Pana Dekana Wydziału Geodezji
Górniczej i Inżynierii Środowiska Akademii Górniczo-Hutniczej w Krakowie
prof. dr hab. inż. Stanisława Gruszczyńskiego nr 197/17 z dnia 25.05.2017 r.

2. Ogólna charakterystyka rozprawy

Rozprawa doktorska obejmuje łącznie 148 stron i zawiera 175 rysunków i 72
tabele. Do pracy jest dołączona płyta CD z danymi pomiarowymi, szkicami, zdjęciami,
kalibracją kamer i zestawieniami współrzędnych. Wykaz literatury liczy 137 pozycji
i zawiera wszystkie istotne dla przedmiotu rozprawy publikacje, w większości
pochodzące z renomowanych wydawnictw, w tym jedną publikację, w której
Doktorant jest współautorem.

Rozprawa składa się z 10 głównych, ponumerowanych rozdziałów oraz ze
wstępu (wprowadzenia) i wniosków końcowych (podsumowania). Na początku praca
w zwartej i logicznej formie prezentuje cel i przedmiot badań oraz tezę, której
ślubność Autor zamierza wykazać. W dalszych rozdziałach przedstawione są
podstawy teoretyczne, metody i algorytmy zastosowanych rozwiązań, jak również
tryb, wyniki i interpretację przeprowadzonych testów praktycznych. Tekst rozprawy
kończąc poprawne i uzasadnione wnioski. Rozprawa jest dobrze przygotowana pod
względem redakcyjnym.

3. Ocena przedmiotu, tezy i metod badań

Przedmiotem badań Doktoranta były panoramy immersyjne i ich
zastosowanie w pomiarach fotogrametrycznych wraz opracowaniem chmur punktów
na podstawie tych obrazów i wyznaczeniem trajektorii ruchu systemów mobilnych
rejestrujących panoramy.

Immersyjne obrazy wideo to sekwencje wideo, które powstają w wyniku
rejestracji wieloobjektywowej przez cyfrowy system dioptryczny. Wykonywanie
pomiarów na podstawie obrazów immersyjnych oparte jest na zbliżonych zależnościach jak w fotogrametrii sferycznej, jednak zasadnicze różnice zmiieniające metody opracowania takich danych związane są z bardzo dużą liczbą obrazów (nawet kilka tysięcy). Przetwarzanie takich geodanych jest niezwykle trudnym zadaniem, którego zazwyczaj podejmują się tylko fotogrametrzy z dużym doświadczeniem szczególnie biorąc pod uwagę inną geometrię powstania obrazu (różne położenie środków rzutu – wynikające z budowy takich kamery).

Modelem immersyjnym to model panoramy w rzutowaniu sferycznym i jest reprezentowany jako nieciągły okrąg co z kolei wpływa na błędy łączenia pomiędzy obrazami zarejestrowanymi przez kamery wchodzące w skład systemu. Minimalizacja tego błędu jak również błędów pomiaru fotogrametrycznego oraz określenie czynników wpływających na generowanie panoram sferycznych i immersyjnych są jednymi z celów szczegółowych niniejszej rozprawy. Oprócz powyższych Autor stawia sobie jako cele budowę i kalibrację systemu mobilnego opartego o kamery immersyjną oraz podniesienie dokładności wyznaczenia trajektorii ruchu tego systemu.

Cele badawcze postawione przez Doktoranta były niezwykle ambitne i dotyczyły zarówno określanie możliwości pomiarów uwzględniając poszczególne czynniki jak i zbudowanie autorskiego systemu mobilnego wykorzystującego kamerę immersyjną. Autor, na podstawie przeglądu literatury i badań własnych stwierdził, że:
- immersyjne obrazy wideo pozyskiwane z systemów mobilnych mogą być użyte jako źródło fotogrametrycznych danych do pomiaru 3D o dokładności wynikającej z geometrii modelu odwzorowania;
- immersyjne obrazy wideo pozwalają na tworzenie modeli 3D obiektów w postaci chmury punktów o dużej rozdzielczości;
- immersyjne obrazy wideo pozwalają na poprawienie dokładności wyznaczenia trajektorii ruchu kamery poprzez integrację metody SfM z pomiarami GNSS/INS.

Są to główne tezy pracy, a jednocześnie podstawowy element oryginalności i nowatorstwa omawianej rozprawy.

Najważniejszą cechą obrazów immersyjnych są przesunięcia środków rzutów kamery składowych co jest często pomijane z uwagi na niskie dokładności produktów końcowych. Problem ten stanowi duży potencjał badawczy i może zostać trochę zbity skromnie opisany w rozprawie. Doktorant bardziej skupił się na błędach opracowania obrazów immersyjnych przy zastosowaniu algorytmów dla panoram sferycznych. Takie podejście jest akceptowalne i pozwoliło Autorowi na opisanie całego szeregu błędów obrazów immersyjnych względem modelu sferycznego. Jednak z uwagi na fizykę zjawiska (przesunięcie środków rzutu), obraz będzie zawierał pewne zniekształcenia, a co za tym idzie błędy te nie pozwolą na opracowanie produktów o dużej dokładności, ale i nie zawsze jest taki cel. W obecnej sytuacji gospodarczo-społecznej Europy takie podejście jest bardzo dobrym przykładem prawidłowego sposobu rozwiązania problemów „społeczności informacyjnego” z dostępem do informacji, gdzie ważniejsze od wysokiej dokładności są wyniki „tu i teraz”.

Istotę problemu stanowi więc opracowanie modelu różnicy pomiędzy geometrią obrazu immersyjnego i geometrią panoram sferycznych. Po rozwiązaniu powyższego problemu Autora skupia się na określeniu i analizie czynników wpływających na opracowanie chmury punktów z obrazów immersyjnych. Badania
związane z określeniem liczby panoram, długością baz, zmian rozdzielczości obrazu czy zmian tonalnych obrazu wydają się poprawne lecz opisane dość skrótno.
Następnie Doktorant buduje i kalibruje system mobilny do pozyskiwania modeli 3D ulic i wnętrz obiektów. Na podstawie prac eksperymentalnych dochodzi do wniosku, że można uzyskać dokładność modeli 3D obiektów w zakresie 1 ÷ 4 cm.

Podstawą warsztatu naukowego metody opracowanej przez Doktoranta jest wykorzystanie, modyfikacja i dostosowanie algorytmów przetwarzania obrazów na potrzeby wspomagania procesu generowania chmur punktów z obrazów immersyjnych. Co prawda wszystkie te operacje wykonywane są w komercyjnym oprogramowaniu lecz nie umniejsza to znaczenia badań i znajomości zagadnień. Wszystkie uzyskane wyniki zostały poddane wnikliwej analizie porównawczej, w wyniku której Autora stwierdził zarówno poprawność swojej metody, jak też zasadność wykorzystania takich obrazów w autorskim systemie pozyskiwania geodanych.

Należy uznać, że sformułowanie celu i tezy rozprawy jest zrozumiałe i jednoznaczne. Wyniki pracy, poza znaczeniem naukowym, mogą znaleźć bezpośrednie zastosowanie również w realizacjach praktycznych - szczególnie w opracowaniach fotogrametrycznych z bliskiego zasięgu do tworzenia modeli 3D miast co stanowi również o utylitarnym charakterze prowadzonych badań.

4. Ocena układu i treści rozprawy

Na logiczny układ rozprawy składają się następujące główne jej części:
- część początkowa, która obejmuje wstęp, a w nim sformułowanie tezy i związane wprowadzenie do problemu;
- część teoretyczna, podstawowe informacje o fotogrametrii panoramicznej i obrazach immersyjnych oraz przegląd dotychczasowych rozwiązań;
- część eksperymentalna, stanowiąca rozdziały od 7 do 11 (92 stron), która zawiera opis autorskiego systemu, badania określające poszczególne wpływy parametrów na dokładność i jakość poszczególnych etapów uzyskiwania produktu końcowego oraz weryfikację metody;
- część końcowa zawierająca podsumowanie i wnioski, wykaz literatury, zestawienie tabel i rysunków oraz jeden załącznik na płycie CD.

Zagadnienia poruszone w części teoretycznej rozprawy, stanowią niezbędny składnik wprowadzenia do problematyki rozprawy i zastosowanych rozwiązań. Na uwagę zasługuje właściwy dobór informacji oraz zwięzła, encyklopedyczna i przystępna forma jej przedstawienia, z uwzględnieniem specyfiki podjętego tematu. Autor słusznie podkreślił tutaj, wspomniany wcześniej w recenzji, kluczowy charakter wpływu modelu sferycznego na pomiary fotogrametryczne w opracowanych przez siebie metodach i algorytmach.

W części eksperymentalnej Doktorant opisał autorski system mobilnego kartowania oraz przeprowadził badania związane z opracowaniem modeli 3D z obrazów immersyjnych. Wydaje się, iż pomysł na realizację badań był trafny, tym bardziej, że powstał średnio budżetowy system mobilny oparty na kamerze immersyjnej, który z uwagi na otrzymywane
dokładności będzie mógł być wykorzystany w pozyskiwaniu danych np. obiektów zabytkowych czy archeologicznych. Konkludując aspekt metodyczny rozprawy, zasadnym jest stwierdzenie, iż podczas jej realizacji Autor wykorzystał kilka metod badawczych, doprowadzając do opracowania pełnej metodyki pozyskania modeli 3D obiektów na podstawie autorskiego systemu mobilnego opartego na kamerze immersyjnej. Proces badawczy zaproponowany przez Doktoranta uważam za właściwie przeprowadzony, a w zakresie badań złożony.

Oceniając oryginalność naukową zaproponowanego podejścia badawczego uważam, że posiada ono cechy rozwiązania nowego, nie występującego dotychczas w znanej mi literaturze tematu. Stąd uzasadnionym jest twierdzenie, że recenzowana praca, w zakresie wagi problemu badawczego spełnia wymogi formalne stawiane rozprawom doktorskim.

5. Uwagi, pytania i komentarze
 5.1. Uwagi główne dotyczące treści rozprawy

Praktycznie nie mam uwag do rozprawy. Mogę mieć tylko pewne zastrzeżenia do niektórych wątków rozprawy potraktowanych trochę za bardzo skróto.

5.2. Uwagi szczegółowe dotyczące treści rozprawy

Tylko jedna uwaga – brak punktów kontrolnych w opracowaniu (występują tylko w ostatnim doświadczeniu). W tym momencie analiza wielu czynników wpływających na dokładność metod jest niepewna, gdyż mówi tylko w zasadzie o wewnętrznej zgodności.

5.3. Pytania do Autora (proszę odpowiedzieć na obronie)

a) Proszę omówić jak widzi Pan rozwój swojego systemu oraz jakich dokładności można byłoby się spodziewać przy zastosowaniu modelu ścisłego.
b) Czy system ten można przekształcić ze średnio-budżetowego na nisko-budżetowy bez straty dokładności produktów końcowych?

6. Konkluzja

Recenzowana rozprawa doktorska wpisuje się w aktualną problematykę naukową związaną z badaniami nad systemami fotogrametrycznymi pozyskiwania danych obrazowych o obiektach oraz widzeniem komputerowym, a szczególnie metodami przetwarzania obrazu. Wynikiem wykonanych przez Doktoranta badań jest opracowana przez niego oryginalna metoda wykorzystania danych z immersyjnych systemów wideo do opracowania modeli 3D ulic i wnętrz obiektów. Dla tej metody Doktorant opracował autorski mobilny system akwizycji geodamskich, a następnie przetestował jego działanie dla serii pomiarów. Prace te wykazały poprawność działania systemu oraz słuszność przyjętej na wstępie tezy.

Wyniki rozprawy mają również istotne znaczenie praktyczne, które rokuje na szerokie ich wykorzystanie w pracach fotogrametrycznych.

Warszawa, 14. lipca 2017 r.

[Podpisanie]